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Figure 1. Tractography of pathway 
connecting posterior cingulated and 
entorhinal cortex using A) Monte Carlo and 
B) PDE tractography. 

INTRODUCTION 
 
The primary goal of the 1 year no-cost extension to this grant was to publish results. This goal has been achieved with publication in 
IEEE Transactions in Medical Imaging (1).  
 
This project addressed the FY10 PRMRP subject of epilepsy. Increasing incidence of traumatic brain injury (TBI) among soldiers will 
likely lead to elevated levels of disability due to TBI-related seizures and epilepsy. The lack of a reliable biomarker hinders efforts to 
interrupt the evolution of epilepsy from TBI. A new, network paradigm for analysis of brain imaging data suggests a new direction for 
diagnosing brain injury. Existing analyses have neither been applied to epilepsy nor have been validated by gold standard data. The 
purpose of this research was to initiate exploration of the concept that network properties of imaging data within the scope of 
predicting the transition of TBI to epilepsy. The specific objectives of this project were to develop a fast analysis protocol and validate 
the analysis with gold-standard invasive electrophysiology measurements from epilepsy patients. The innovative aspects of the 
research are application of a partial differential equation framework for fast analysis, the application of the network paradigm to 
epilepsy patients and validation with gold standard invasive measurements. The relevance of the project to the FY10 PRMRP topic of 
epilepsy stems from the potential use of a validated, network paradigm as a biomarker of risk for the transition from TBI to epilepsy 
with the intent of interrupting that transition. 
 
BODY 
 
Research accomplishments are summarized below along the lines of The Statement of Work, which outlined the following main tasks: 

• Develop a partial differential equation (PDE)-based tractography methodology to enable fast, whole-brain measurements of 
connectivity. 

• Validate noninvasive measurements of connectivity by comparison to gold standard, invasive electrophysiology 
measurements. 

• Summarize and publish results. 
 
Develop a partial differential equation (PDE)-based tractography methodology to enable fast, whole-brain measurements of 
connectivity. 
 
The theoretical framework and tests of PDE-based tractography have been 
published in a high impact journal (1). The results go beyond a previously-
published conference paper (2) as follows: 
 

• Clarification of the formalism through diagrams. 
• Demonstration of efficacy of PDE formalism when using mult-voxel 

target regions, as opposed to single-voxel regions, setting the stage for 
fast whole-brain tractography. 

• Demonstration of PDE formalism in a wide range of pathways, 
including corticospinal, arcuate and short association fibers. 

• Demonstration of speed advantage as compared with Monte Carlo and 
graph theory based approaches. 

 
Additional work clearly demonstrates the comparability of Monte Carlo and 
PDE approaches in the pathway connecting the posterior cingulated and 
entorhinal cortex despite a 12,000 times acceleration afforded by the PDE 
approach. Furthermore, a MATLAB package has been developed to implement 
the tractography. 
 
Validate noninvasive measurements of connectivity by comparison to gold 
standard, invasive electrophysiology measurements. 
 
PDE tractography measures of connectivity were compared with 
electrophysiology measurements of cortico-cortico evoked potentials (CCEPS) 
achieved with stereotactic electrodes (3). The use of stereotactic electrodes avoids some of the coregistration error associated with the 
use of subdural grids. Results (figure 2) show correlation between PDE tractography measures of connectivity but not with resting-state 
functional connectivity (4, 5).  
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Figure 2. PDE-based connectivity (A) correlates with cortico-
cortico evoked potentials (CCEPs) while resting state functional 
connectivity (B) does not. 

 
Summarize and publish results. 
 
Work described here has been published in IEEE Transactions on Medical Imaging (1) and presented at the 2013 Scientific Meeting of 
the International Society for Magnetic Resonance (3). These are included in the appendix. 
  
KEY RESEARCH ACCOMPLISHMENTS 

• Clarification of the theory of PDE-based 
tractography. 

• Development of a MATLAB package for 
practical implementation of the PDE approach. 

• Finding of correlation between gold-standard 
electrode recordings and anatomical connectivity 
based on tractography while no such correlation 
was found by resting-state functional 
connectivity. 

 
REPORTABLE OUTCOMES 

• Publication in IEEE Transactions on Medical 
Imaging (1). Included in the appendix. 

• Presentation at the 2013 Scientific Meeting of the 
International Society for Magnetic Resonance in 
Medicine (3). Included in the appendix. 

 
CONCLUSION 
 
The primary goal of this no-cost extension, publishing the results, has been largely achieved with publication of the method in IEEE 
Transactions of Medical Imaging (1).  
 
We have developed a MATLAB package that can implement the PDE methodology. This package will be tested against Monte Carlo 
tractography and electrophysiology in a number of pathways. Results to date suggest that PDE-based tractography measures of 
anatomical connectivity correlate with electrophysiological measures while functional connectivity does not. As the speed of the 
package enables whole-brain tractography, the product of this research will enable network analyses of anatomical connectivity.  
 
As a scientific or medical product, the work accomplished represents a step towards totally non-invasive evaluation of the brain at risk 
for epilepsy. Such an evaluation would enable rapid evaluation of pharmacologic interventions and development of new therapies. 
Unfortunately, although victims of traumatic brain injury are at high risk for developing epilepsy, there is no clear-cut way to predict or 
evaluate strategies for treating epileptic seizures. On the near term, surgical intervention for phamacoresistant epilepsy often relies on 
highly invasive electrode monitoring that is an option for only the most highly motivated patients. Progress toward noninvasive 
detection of targets for surgical resection would relieve the burden of suffering among these patients while opening up new treatment 
options. 
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� 
Abstract—Although tractography can noninvasively map 

axonal pathways, current approaches are typically incomplete or 
computationally intensive. Fast, complete maps may serve as a 
useful clinical tool for assessing neurological disorders stemming 
from pathological anatomical connections such as epilepsy. We 
re-frame tractography in terms of logic and conditional prob-
abilities. The formalism inherently includes global constraints 
and can compute connections between any two arbitrary regions 
of the brain. The formalism also lends itself to a fast implementa-
tion using standard partial differential equation solvers, which 
makes whole-brain probabilistic maps of anatomical connectivity 
feasible. We demonstrate results of our implementation on in 
vivo data and show that it outperforms Monte Carlo approaches 
in both computation time and identification of pathways.  
 

Index Terms—Diffusion MRI, probabilistic tractography, 
connectome, diffusion tensor imaging, connectivity analysis 
 

I. INTRODUCTION 
RACTOGRAPHY is the only method that can noninva-

sively map axonal pathways in the brain [1]-[4]. Current 
methods are typically incomplete or computationally inten-
sive. For example, standard deterministic streamline tracto-
graphy typically fails to delineate known lateral projections of 
the corticospinal tract (CST) [5], [6] or transcallosal connec-
tions between hand areas of the motor cortex [7]. Probabilistic 
tractography [8], [9] can overcome such limitations by 
generating multiple paths over a probability distribution but 
can be computationally intensive. Furthermore, most algo-
rithms use only local information. That is, each step along a 
pathway is only determined by information at the position of 
that step, ignoring knowledge about distal regions. 

We introduce a generic formalism for tractography based on 
probability theory. The formalism inherently includes global 
information about the terminations of pathways and the 
presence of boundaries. The formalism also lends itself to fast 
implementation by standard numerical solvers for partial 
differential equations (PDE). After a theoretical derivation of 
the formalism, we demonstrate advantages in terms of speed 
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and identifying pathways that are otherwise difficult to 
delineate. The advantages are particularly evident when 
assessing long pathways, such as transcallosal connections 
between hand motor regions, pathways not lying along major 
tracts, such as the arcuate fasciculus and pathways near 
boundaries, such as U-fibers connecting cortical regions along 
gyri. 

The proposed method uses probability theory differently 
from previous constructions. Standard formulations of 
probabilistic tractography generate an ensemble of tracks [8], 
[9]. A connectivity map is generated by showing the number 
of tracks in each voxel. A given track in the ensemble consists 
of a sequence of line segments that connect to form a stream-
line. The line segments initiate at a seed point, the direction of 
each segment is generated in a probabilistic fashion, and the 
streamline terminates upon encountering a stopping criterion. 
Furthermore, the probability distributions at each voxel are 
derived and sampled using only local information. For 
example, the direction of a given segment is not influenced by 
whether or not subsequent segments intersect a target region 
of interest. 

The method proposed here focuses on the expected number 
of tracks passing through each voxel, rather than the trajectory 
of segments along the track, from a probabilistic standpoint. 
Tracks are not explicitly generated, but the number of tracks is 
required to be continuous. Furthermore, the local information 
from imaging data is conditioned by requiring all the implicit 
tracks to intersect both a seed and target region and avoid the 
tissue boundary. As standard probabilistic tractography 
generates populations of tracks by random sampling methods, 
we will refer to it as Monte Carlo (MC) tractography. The 
method introduced here, implemented with PDE techniques, 
will be referred to as PDE tractography. 

Although the PDE approach was designed to mimic the 
behavior of track counts generated from MC tractography, the 
resulting formalism bears some similarity to graph-based 
shortest path [10], [11] and flow-based approaches [12], [13]. 
Differences with regard to interpretation and performance 
among the approaches will be examined with direct compari-
son of results demonstrated with the graph-theoretic approach 
[10].  

II. THEORY 
The goal is to calculate the number of tracks in a given 

voxel subject to the conditions that the tracks leave a seed 
region and terminate in a target region before intersecting a 

Logical Foundations and Fast Implementation 
of Probabilistic Tractography 

Myron Zhang, Ken E. Sakaie, and Stephen E. Jones 

T 
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boundary. To achieve this goal, we will first develop a generic 
formalism for considering the track number from the stand-
point of conditional probabilities and logic. We will then 
relate this formalism to diffusion MRI data and a practical 
algorithm for calculating the number of tracks. 

The notation follows conventions for conditional probabili-
ties that have been used in other treatments of the tractography 
problem [8], [14]. ( | , )p A B C  denotes the probability of 
proposition A given the condition that propositions B and C 
are true. The comma represents the logical AND operation. 
The derivation uses the product rule [15]: 
 � � � � � �, ,p A B C p A B C p B C� . (1) 

We will use lowercase letters to indicate voxels and uppercase 
letters to indicate conditions. For example, t indicates a target 
voxel, x a voxel along a track and xi a neighbor of x.  XiT 
indicates the proposition that a track at voxel xi eventually 
reaches the target voxel, t, and XiX indicates the proposition 
that a track moves from voxel xi to x (Fig. 1). In addition, we 
define �(x) as the number of tracks at voxel x.  

Continuity arguments lead to the central equations for the 
derivation. The number of tracks in a voxel is directly related 
to the number of tracks in neighboring voxels: 
 � �( ) , ( )i i i

i
x p X X X T I x� ��� , (2) 

which states that tracks in a voxel, x, arrive via a neighboring 
voxel, xi and that only tracks terminating at the target, t, are 
considered. The relation is through the transition probabili-
ties, ( | , )i ip X X X T I , of a track moving from a neighbor, xi, to 
the voxel x subject to the condition, XiT, that the track 
eventually reaches the target. The symbol I denotes all prior 
information, including the implicit condition that the tracks 
start at a seed voxel and do not intersect a boundary. The 
conditions introduce global constraints by enforcing tracks to 
intersect the target. In a typical derivation, only local transi-
tion probabilities, dependent only on properties at the voxel x 
and the position of its neighbor, xi, would be used without any 
inherent conditions regarding the target or boundary.  

To calculate the global transition probabilities in (2), we 
first solve for ( | )p XT I . These probabilities are also subject to 

a continuity condition: 
 � � � � � �i i

i
p XT I p XX I p X T I� � , (3) 

and involve the local transition probability of moving from x 
to xi, ( | )ip XX I . These local transition probabilities are 
derived from the diffusion MRI data. The approach specified 
here involves integration over a fiber orientation distribution 
function (fODF) [16]. The fODF is integrated, on a voxel-by-
voxel basis, over sub-regions of the unit sphere nearest a line 
connecting the center of a voxel with each neighbor voxel. 
Details are provided in the Methods section. If a diffusion 
orientation distribution function (dODF) [17]-[19] is used 
instead, the resulting map describes the anisotropic random 
walk of water molecules. 

Equations (2) and (3) are finite difference equations for 
which a number of standard and fast numerical solvers exist. 
Solution requires us to specify the transition probabilities 

( | , )iip X X X T I  to solve for �(x) in (2) and ( | )ip XX I  to 
solve for ( | )p XT I  in (3).  

We will now use logical considerations to derive the global 
transition probability, ( | , )iip X X X T I . From the product rule 
(1), we find: 

 � � � �
� �

,
, i i

i i
i

p X X X T I
p X X X T I

p X T I
� . (4) 

Physical considerations (Fig. 2) lead to the relation: 
 � � � �, ,i i ip X X X T I p X X XT I� . (5) 

Although proposition XiX is not independent from proposition 
XiT, propositions XiX and XT are independent if we assume the 
transition process is Markov, so: 
 � � � � � �,i ip X X XT I p X X I p XT I�  (6) 

Inserting (6) into (4), we find: 

 � � � � � �
� �

, i
i i

i

p X X I p XT I
p X X X T I

p X T I
� . (7) 

Given the local transition probabilities, ( | )ip X X I , one can 
solve (3) to derive ( | )p XT I . One can then derive the global 
transition probabilities with (7) and then solve for the track 
number, �(x), in (2).  

Essential to solving the finite difference equations (2) and 
(3) is the proper selection of boundary conditions. For (2): 
 ( ) 0b� �  (8) 
 ( )s N� �  (9) 

s xi=1

xi=2

x t

boundary
Fig. 1.  Illustration of notation. Tracks passing through a voxel, x, pass 
through a neighbor voxel, xi. For clarity, only two neighbors are shown. Solid 
lines indicate tracks originating in a seed voxel, s, and terminating at a target 
voxel, t, without intersecting the boundary. Dashed line indicates a track that 
hits the boundary before reaching the target. Although all tracks satisfy the 
condition XiX (track passes through neighbor xi before entering x), only the 
tracks indicated by solid lines satisfy the condition XiT (track terminates at 
target). 
 

x

xi

x̄

t

 
Fig. 2.  Illustration of joint probabilities in (5). Tracks passing through voxel 
xi will pass through a neighbor voxel, x, or some other voxel, represented by 
x . Tracks represented by both lines satisfy the condition XiT. However, only 

tracks represented by the solid line satisfy the joint condition XiX,XiT, which is 
therefore equivalent to the joint condition XiX,XT. 
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where the number of pathways at the boundary, b, is set to 
zero and number of pathways at the seed voxel, s, is set to a 
number N. These conditions directly reflect physical con-
straints. N represents the number of tracks originating at the 
seed that subsequently reach the target without hitting the 
boundary. N acts as an overall scaling factor for the number of 
tracks, �(x), found at each voxel in the imaging volume. For 
example, if we set N = 100 and �(x) = 20, that means 20% of 
the tracks between s and t pass through x. In all of our results, 
we set N = 1, so that �(x) represents the fraction of tracks 
passing through x. We refer to this scaled track number as 
“track density.” 

For (3), we have: 
 ( | ) 0p BT I �  (10) 
 ( | ) 1p TT I � . (11) 
The first condition excludes tracks at the boundary. The 
second is required by consistency—tracks at the target clearly 
reach the target. We also impose the constraints: 
 ( | ) 0ip TT I �  (12)  
 ( | ) 0ip S S I �  (13)  
for all neighbors ti of the target, t, and neighbors si of the seed, 
s, when solving (2). Equation (12) reflects the fact that tracks 
do not emanate from the target, while (13) prevents tracks 
from returning to the seed after they have left the seed. 

The final mathematical expressions for numerical computa-
tion of (2) and (3) are two large, linear systems of finite-
difference equations, which can be written as square matrices 
whose size is determined by the number of computational 
voxels used to represent the brain volume. Since the value of 
any given voxel is determined solely by the values of adjacent 
voxels, the matrices are sparse. The equations are finite-
difference forms of PDEs [20], suggesting that, in the 
continuum limit, they could be derived from a PDE. 

III. METHODS 
We compare the PDE approach to a Monte Carlo approach 

and a shortest path approach with in vivo data. Tracking 
performance is evaluated by comparing the similarity of track 
density maps and track geometries between the approaches 
and by comparing computation time. We also construct a 
digital phantom to evaluate discretization error and demon-
strate key conceptual and performance points in the PDE 
method. 

A. In Vivo Data 
In vivo data were acquired under a protocol approved by the 

local internal review board. Five subjects were imaged on a 
Siemens TIM Trio (Siemens Medical Solutions, Erlangen, 
Germany) with a standard 12-channel head coil. The HARDI 
acquisition provided whole-brain coverage with 2.5 mm 
isotropic voxels (256 mm x 256 mm FOV, 102 x 102 matrix, 
48 slices. TE = 77 msec, TR = 6500 msec, BW = 1442 
Hz/pixel, partial Fourier factor = 5/8, 61 non-collinear 
diffusion-weighting gradients with robust ordering [21] with b 
= 1000 sec/mm2 and 7 b = 0 volumes, 2 averages). Motion 
correction was performed with an iterative algorithm [22] that 

updated gradient vectors [23]. 
For in vivo data, seed and target points were placed to 

examine several important pathways. Shown here are results 
from corticospinal tract, transcallosal pathway between hand 
regions of motor cortex, arcuate fasciculus, superior longitudi-
nal fasciculus, and a short association fiber (U-fiber). The 
length of and presence of multiple fiber crossings along the 
transcallosal pathway between hand regions of motor cortex 
make this pathway hard to define, even by probabilistic 
tractography. The arcuate fasciculus constitutes the inferior 
margin of the superior longitudinal fasciculus. Each of these 
pathways can be challenging to identify by tractography due to 
their length and proximity to the boundary. The superior 
longitudinal fasciculus and short association fiber are used to 
compare utility of the PDE method in long and short associa-
tion pathways. 

In all tracts other than the corticospinal tract, a single-voxel 
seed and target was used to define the pathway. For the 
corticospinal tract, both single-voxel and multi-voxel regions 
were used to demonstrate the extensibility of the PDE method 
to multi-voxel seeds and targets. The seed included 569 voxels 
in the motor strip, segmented by FreeSurfer [24], and the 
target included 4 voxels in the brainstem. 

All in vivo tractography (PDE, MC, and shortest path) was 
performed with a white matter mask, generated with SPM 
[25], to define boundaries. For the PDE tractography to run, 
all that is needed, in principle, is a tissue mask to define 
boundaries and transition probabilities defined within the 
mask. In practice, however, implausible connections through, 
for example, ventricles or across the midsagittal fissure may 
occur. 

B. Digital Phantom 
Sampling of the fiber orientation distribution along 26 

directions, as opposed to a continuum of directions, will lead 
to discretization error when the fiber orientation lies oblique to 
the imaging grid. To examine the effect of discretization error, 
we constructed a simple digital phantom simulating a single 
straight white matter fiber in the midst of gray matter. The 
fiber is aligned in the axial plane at angles with respect to the 
right-left axis ranging from 0° to 45°. The signal profile of 
white matter, as a function of diffusion weighting gradient, is 
that of an axially symmetric diffusion tensor with fractional 
anisotropy (FA) of 0.707 and mean diffusivity (MD) of 0.7 x 
10-3 mm2/sec with principal eigenvector aligned along the 
fiber. The signal profile of gray matter is that of isotropic 
tissue (FA = 0, MD = 0.7 x 10-3 mm2/sec). Due to symmetry, 
properties for angles ranging from 90° to 45° will be the same 
as angles from 0° to 45°. 

The length of the fiber was fixed at 52 voxel-widths, and 
the width and thickness at 1 voxel-width. The simulated data 
has matrix size and diffusion gradient profile similar to that of 
the in vivo data, with dimensions of 103 × 103 × 48 voxels. 
The white matter fiber was centered in the 24th axial slice. 
The computational mask was one voxel inward from all faces 
of the data matrix (101 × 101 × 46 voxels), which included the 
white matter fiber and all surrounding gray matter. As 
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multiple b = 0 volumes are used to counteract the impact of 
noise for in vivo data and no noise was injected in the 
simulation, the gradient profile used in the simulations used 
only a single b = 0 image volume. 

In addition to evaluating discretization error, the 0° phan-
tom was also used to illustrate ( | )p XT I  from (3) and the 
importance of conditioning the probabilities by solving (2) 
with conditioned and unconditioned transition probabilities. 
Also, the 0° phantom was constructed at different resolutions, 
ranging from 26 × 26 × 12 to 208 × 208 × 96, to evaluate how 
the speed performance of the PDE method scales with 
resolution. 

C. Tractography 
For the PDE method, local transition probabilities were 

calculated from the fiber orientation distribution calculated in 
each voxel of in vivo data. The fiber orientation distribution 
function (fODF) was calculated from the HARDI data by 
spherical deconvolution [16] with automatically optimized 
regularization [26]. The resulting fODF is represented as 
coefficients of a subset of spherical harmonics that satisfies 
conditions of antipodal symmetry and real, as opposed to 
complex, values [27]. Spherical harmonics up to degree 8 
were used, leading to 45 coefficients. The calculation results 
in a model for the orientation of white matter fibers in each 
voxel: 
 � �

,
f DF(O , ) ,m

lm l
l m

c Y� �	 	� �  (14) 

where � is the zenith angle, � is the azimuth angle, ( , )m
lY 	 �  

are the modified spherical harmonics and lmc  are the coeffi-
cients specific to a given voxel. The transition probabilities are 
the integral of the fODF over a sub-region of the unit sphere: 
 � � � �fODF ,ip X X I d d�	 	 �� 
 
  (15) 

where the integration ranges over the sub-region closest to the 
vector connecting the centers of voxels x and xi. We perform 
this integral numerically by calculating values of the fiber 
orientation distribution over 2000 evenly spaced points on the 
unit sphere generated by an Archimedian spiral 
(http://www.math.niu.edu/~rusin/known-math/97/spherefaq) 
and summing values among points nearest the unit vector 
pointing to each of 26 near neighbor voxels. 

The finite difference equations (2) and (3) were solved by 
numerical solution of a large sparse matrix equation using the 
bicgstab function in MATLAB (The Mathworks, Natick MA). 
Successive over-relaxation was also used, resulting in 
equivalent results but requiring substantially more time. 

To demonstrate the importance of including global informa-
tion via conditional probabilities, track counts were calculated 
in a phantom using local transition probabilities only. 
Specifically, in (2), the conditional probabilities, 

( | , )i ip X X X T I , are replaced by the local transition probabili-
ties, ( | )ip X X I . 

To compare the PDE method to a MC method, we used an 
existing MC algorithm based on fiber orientation distributions 
[7] adapted from [28]. One billion tracks were initiated from 
the seed point with direction chosen from the fiber orientation 
distribution by rejection sampling. The step length was chosen 

as 0.75 times the voxel length (1.875 mm), as in the work of 
Hagmann et al. [28] and in Lowe et al. [7]. No optimization 
with regard to step length was performed in this work. Steps 
with a bending angle of more than 90° were reflected across 
the origin to limit backtracking. Streamlines were eliminated if 
they encountered the boundary or returned to the seed before 
reaching the target. Computation was performed using in-
house software written in C and implemented on a 320-cpu 
cluster. 

We also demonstrate results generated from code gener-
ously provided by Dr. Iturria-Medina for comparison with 
graph-based shortest path approaches [10]. The code takes an 
input of connectivity between each voxel and its 26 neighbors, 
for which we use the same discretized fODF values as we do 
for the PDE method. The same mask was used as for all 
approaches. 

For the PDE and MC methods, the entire calculation entails 
1) calculation, discretization and loading into memory of the 
fODF, 2) calculation of the track density maps and 3) saving 
the maps to disk. Additionally, in the MC calculation track 
density maps generated by each CPU of the cluster are merged 
in a separate step. Quoted PDE and MC calculation times are 
only for step 2, calculation of track density maps. Step 1 
requires several minutes, but need only be done once for a 
given data set. Step 3 requires several seconds. Merging 
results for the MC calculation from the cluster requires several 
minutes.  

For the shortest path method, the entire calculation entails 
1) calculation, discretization and loading into memory of the 
fODF, 2) generating the graph representation of the brain, 3) 
computation of shortest paths using Dijkstra’s algorithm and 
4) saving the maps to disk. The reported shortest path 
computation times are only for step 3, computation of shortest 
paths using Dijkstra’s algorithm. 

IV. RESULTS 
First, we examine discretization error, intermediate steps of 

the theory and the effect of conditioning transition probabili-
ties in a single-fiber digital phantom. We then present results 
of PDE, MC and shortest path tractography in a variety of in 
vivo pathways. Lastly, we evaluate the speed performance of 
PDE and shortest path tractography in increasingly large 
datasets. 

A. Phantom Evaluations 
Figs. 3 and 4 show the impact of discretization error on 

track density values. Track densities were calculated for the 
digital phantom for each integer angle between 0° and 45° 
with respect to the right-left axis. Fig. 3 shows track density 
maps for angles of 0°, 22° and 45°, from which we can see 
that the results are qualitatively similar. To make a quantita-
tive comparison, a line was drawn between the center of the 
seed and target voxels for each angle, and values of track 
density in each voxel intersecting the line were then assigned a 
position coordinate ranging from 0 (center of seed) to 1 
(center of target). To facilitate comparison with the 0° 
configuration, linear interpolation was used to determine 
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values at 1000 equally-spaced points from 0 to 1. Fig. 4(a) 
shows the profile of track densities for 0° and 45°. Qualita-
tively, the difference is slight. We quantify the difference in 
track density �, as defined in (2), by calculating the maximum 
relative error at angle � 
 � � � � � �� �max , ,0 / ,0

t
t t t� � �	 � , (16) 

where t is the position coordinate and � is the angle with 
respect to the right-left axis. The maximum relative error is 
largest for � = 45° (Fig. 4(b)). The size of the error can be 
large and occurs where the track density exhibits a steep slope 
near the seed and target. The error may therefore result from 
finite sampling and linear interpolation of track density values 
along the length of the pathway. The cross section of the fiber 
in the simulation shown is 1 voxel. However, fibers with 
larger cross sections show similar trends of comparable 
magnitude, indicating that the discretization error is inherent 
to the algorithm, not the fiber geometry. 

The 0° phantom was also used to demonstrate the results of 
solving intermediate step (3) for ( | )p XT I  (Fig. 5). The value 
at each voxel x represents the probability that a track from x 
will intersect the target but not the boundary. The intensity is 
high near the target but falls off quickly with distance from the 
target. The rapid falloff reflects the low likelihood of tracks 
reaching the target before the boundary, a result of the 
boundary (the 6 faces of the imaging volume) being much 
larger than the target (a single voxel). The map resembles a 
solution of Laplace’s equation with boundary conditions of 1 
at the target and 0 on the faces of the volume. However, 
anisotropy in the white matter fiber leads to an oblong shape 
in contours, particularly near the target. The value at the seed, 

( | )p ST I , is only 3.19×10-4. Only about 3 out of every 10,000 
tracks will reach the target from the seed without intersecting 

the boundary. Conditioning on the target in (2) limits consid-
eration to only the small subset of tracks that reach the target 
before hitting the boundary. 

Fig. 6 shows the results of solving the continuity equation 
(2) using the unconditioned transition probabilities using the 
same 0° phantom. Conceptually, this is equivalent to starting 
tracks from the seed and then considering all tracks regardless 
of whether they intersect the target or boundary. In the track 
density map (Fig. 6(a)), we can see anisotropy along the white 
matter fiber in voxels close to the seed, but as the tracks fan 
out, the track density decreases rapidly with increasing 
distance from the seed and fails to rise back up at the target. A 
semi-log plot of track density along the line from seed to 
target is shown in Fig. 6(b). The conditional probabilities 
effectively filter out the tracks that strike the boundary or do 
not reach the target, leading to a more focused track density 

Fig. 3.  Visual comparison of the track density maps of a white matter fiber 
phantom rotated at 0°, 22°, and 45° with respect to the right-left axis in the 
axial plane. The intensity range is set to [0, 0.2]. 
 

a ba b

Fig. 4.  (a) Track density along simulated white matter fibers oriented along 
the right-left axis (black) and in the axial plane at a 45° with respect to the 
right-left axis (red). Fiber is 1 voxel in cross section. Position along the track 
is scaled so that the seed is positioned at zero and the target is positioned at 1. 
(b) Maximum relative error of track density as a function of angle. The size of 
error can be large, but this may be largely attributed to finite sampling and 
linear interpolation along a very steep, nonlinear curve, as seen in (a). 
 

Fig. 5.  The solution to (3), p(XT | I), in the 0° white matter fiber phantom. 
The intensity range is [0, 1]. The brightest white dot is the target, the blue dot 
represents the seed and the boundary sits at the faces of the imaging volume, 
including the edges of the figure. Values fall rapidly with distance from the 
target. Oblong shapes of contours near the target indicate effects of white 
matter anisotropy. 
 

a ba b

Fig. 6.  (a) Track density map for white matter fiber phantom using 
unconditioned probabilities in the continuity equation (2). The intensity range 
is [0, 0.2]. The track density appears isotropic due to the rapid falloff in 
density in the absence of conditioning. The anisotropy of the fiber can be 
barely discerned to the right of the seed. (b) Semi-log plot of track density 
versus position along the white matter fiber without conditioning on the target. 
Position 0 is at the seed while 1 is at the target. 
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profile that can persist over long distances (Figs. 3 and 4). 

B. Anatomical Results 
Table I summarizes the computation times of the PDE, MC, 

and shortest path methods in the examined pathways. We can 
clearly see the performance advantage of PDE tractography as 
compared with MC tractography. One billion tracks were 
seeded for each pathway in MC tractography. The tracking 
efficiency, or fraction of tracks leaving the seed voxel that 
eventually reach the target voxel, is remarkably low for MC 
tractography, requiring use of a large computing cluster to 
gain any number of tracks, particularly for pathways near the 
boundary between gray and white matter (arcuate fasciculus) 
and for long pathways with numerous fiber crossings (tran-
scallosal motor pathway). The computation time is concomi-
tantly large, on the order of 1 CPU-month. While the metric of 

tracking efficiency is not directly applicable to the PDE 
approach, run time is uniformly on the order of 1 second for 
any given pathway, in a computational brain volume of 65,000 
voxels. The shortest path approach requires less than 10 
seconds in the same brain volume for any pathway. 

Fig. 7 compares PDE, MC, and shortest path tractography 
within a readily defined pathway, the corticospinal tract 
connecting brainstem and the hand knob of the right motor 
cortex. Shown are maximum intensity projections of the track 
density from the PDE and MC methods and the maximum 
likelihood path from the shortest path method. This pathway 
typically poses few difficulties for tractography, and we find 

TABLE I 
RELATIVE PERFORMANCE OF PDE, SHORTEST PATH (SP), AND MONTE CARLO 

(MC) TRACTOGRAPHY. 

Pathway 
CPU-

seconds 
(PDE) 

CPU-
seconds 

(SP) 

CPU-
seconds 
(MC) 

Track 
Efficiency 

(MC) 
Arcuate 1.4 8.4 4.3×106 1.4×10-8 

Transcallosal 1.1 8.7 3.6×106 1.1×10-7 
Longitudinal 
Fasciculus 0.89 7.7 4.3×106 1.0×10-8 

Short U-fiber 0.88 7.4 4.4×106 6.8×10-4 
Corticospinal 
(single-voxel) 1.2 9.1 4.6×106 2.7×10-6 

Corticospinal 
(multi-voxel) 1.1 N/A 1.6×106 2.1×10-5 

For Monte Carlo results, 109 tracks were generated at the seed for each 
pathway, and track efficiency denotes the fraction of those tracks that 
terminated at the target. Comparison with multi-voxel seed and target was 
only performed for PDE and MC tractography on the corticospinal tract. 
 

 
Fig. 7.  Maximum intensity projection of the corticospinal tract generated by PDE (a, b), Monte Carlo (c, d), and shortest path (e, f) methods. Intensity ranges 
were set to � � [0.05, 0.25] (a, b) and � � [0.02, 1] (c, d), with corresponding color map shown at the bottom. Subsequent figures will only report intensity ranges 
for �, with the same color map implied. 
 

Fig. 8.  PDE (a, b) and Monte Carlo (c, d) tracking between multi-voxel seed 
and target regions. Maximum intensity projections are shown of tracking 
between a seed ROI in the motor strip (569 voxels) and target ROI in the 
brainstem (4 voxels). Intensity range is set to [0.01, 1] for all images. 
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Fig. 9.  Maximum intensity projection of the arcuate fasciculus generated by PDE (a, b), Monte Carlo (c, d), and shortest path (e, f) methods. Intensity ranges 
were set to [0.05, 0.3] (a, b) and [0.01, 1] (c, d). 
 

 
Fig. 10.  Comparison of maximum intensity projections of the corticospinal tract with Monte Carlo seeding 106 (a), 107 (b), 108 (d), 109 (d) tracks, and the PDE 
result (e). Intensity ranges were set to [0.02, 1] (a-d) and [0.05, 0.25] (e). As more tracks are seeded, the Monte Carlo results appear smoother, approaching the 
PDE result. 

 
Fig. 11.  Maximum intensity projection of the transcallosal pathway generated by PDE (a, b), Monte Carlo (c, d), and shortest path (e, f) methods. Intensity 
ranges were set to [0.05, 0.7] (a, b) and [0.01, 1] (c, d). Monte Carlo and shortest path methods show a false connection through the pons, which is absent in the 
PDE result. 
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that the resulting track shapes from PDE (Fig. 7(a), (b)), MC 
(Fig. 7(c), (d)) and shortest path (Fig. 7(e), (f)) methods are 
similar. 

The single-voxel seed and target defining the corticospinal 
tract above can be replaced by multiple-voxel regions without 
loss of generality or performance in the PDE approach. For 
example, Fig. 8 shows the corticospinal tract connecting a 
seed region with 569 voxels in motor cortex and 4 voxels in 
brainstem. The PDE computation time was the same as that 
required for the seed and target consisting of single voxels 
(Table I). The track density map shows details of intersection 
with motor cortex (Fig. 8(a), (c)) that are not apparent in the 
single-voxel seed/target case (Fig. 7(a), (c)). The PDE and MC 
results appear similar, but the PDE result shows more lateral 
projections of the corticospinal tract which may explain the 
larger extent of the PDE track density map relative to that of 
the MC map. 

Fig. 9 shows the arcuate fasciculus, which can be difficult 
to identify because it lies adjacent to gray matter. We can see 
that the PDE and shortest path results exhibit a similar 
geometry in the axial view (Fig. 9(a), (e)), but in the sagittal 
view (Fig. 9(b), (f)), the PDE track curves through axial planes 
while the shortest path track is flat, mostly restricted to a 
single axial slice. The MC results (Fig. 9(c), (d)) show a 
similar geometry to the PDE results (Fig. 9(a), (b)), but in 
pathways close to the boundary like this one, the majority of 
tracks generated by the MC method terminate prematurely 
upon intersecting gray matter, as seen by the patchy appear-
ance of the track counts and the low tracking efficiency (Table 
I). Only 14 tracks out of a billion seeded terminate at the 
target.  

Qualitatively, the results of the PDE approach are smoother 
than those from the MC approach. This smoothness may arise 
from two factors. First, the calculation of local transition 
probabilities discretizes the fODF, integrating over directions 
associated with each of 26 neighbors of a given voxel. Such 
integration smears the fODF with respect to angle, leading to 
smoothing of resulting track density maps. Second, the PDE 
approach resembles the limit of the MC approach as the 
number of samples approaches infinity. It is difficult to 
disentangle these two causes in general. However, we can 
demonstrate how the MC results approach the smooth PDE 
results as the number of MC samples increases. Fig. 10 shows, 
in the corticospinal tract, how the patchiness of the track 
density gives way to a smooth profile as the number of 
samples increases. As the MC approach does not discretize the 
fODF, the smoothing in this case results exclusively from the 
approach to infinity. We used the corticospinal tract rather 
than the arcuate fasciculus for Fig. 10 because the low 
tracking efficiency of the arcuate requires impractically long 
computation times to generate a sufficient number of tracks. 

Fig. 11 shows advantages of PDE tractography in delineat-
ing long pathways encompassing multiple crossings, such as 
the transcallosal motor pathway. The difficulty of MC 
tractography in sampling the pathway is again shown by the 
patchy appearance of the track counts (Fig. 11(c), (d)) as 
compared to PDE tractography results (Fig. 11(a), (b)). 

Furthermore, the MC tractography generates a well-known but 
artifactual “connection” through the pons, which does not 
have high track density in the PDE result. This path through 
the pons is also the maximum-likelihood connection generated 
by the shortest path approach (Fig. 11(e), (f)). 

To evaluate the PDE method in pathways of different 
length, we performed tractography in long and short associa-
tion fibers. Fig. A1 (presented in the Appendix) shows the 
results of tracking the superior longitudinal fasciculus. As in 
the transcallosal pathway, MC and PDE tractography show 
differences. As can be seen in Fig. A1, the PDE method 
traverses the superior longitudinal fasiculus. For the same seed 
and target, the MC method descends into the inferior longitu-
dinal fasiculus and uncinate fasciculus, connecting with the 
superior longitudinal fasiculus at the ends. The shortest path 
method track shows the same geometry as the MC track.  

Fig. A2 shows the results of tracking a short U-fiber. Due to 
the discretization inherent to the method, pathways that are 
short compared to the voxel dimension may not be as clearly 
delineated. This can be seen from the difference in appearance 
between the long (Fig. A1(a), (b)) and short (Fig. A2(a), (b)) 
tracks. While the features of the superior longitudinal 
fasciculus are clear, the shape of the U-fiber is harder to 
discern in the PDE, MC and shortest path methods, which all 
present results in discrete voxels. 

C. Speed Evaluation 
Spatial discretization inherent to the proposed method 

imposes a strong limitation on spatial resolution. Streamline 
tractography methods can, in principle, achieve sub-voxel 
resolution by inferring a continuous vector field of fiber 
orientations from the discretely sampled field [4]. Such a 
result may be approximated by the PDE approach by increas-
ing voxel resolution at the acquisition level or by interpolation 
but with a cost in computation time. To assess the impact of 
such interpolation, we constructed the 0° phantom at eight 
different resolutions (26r × 26r × 12r, r = 1, 2, 3, …, 8). The 
52 × 52 × 24 voxel phantom had a mask containing 6.0×104 
tissue voxels, approximately equal to that of the in vivo tissue 
mask. The computation time depends on the number of tissue 
voxels within the mask, not the total number of voxels in the 
imaging volume. Fig. A3 shows plots of PDE and graph-based 
computation times against number of tissue voxels in the 
mask. The run time for the PDE method scales linearly with 
the number of voxels in the mask, while the run time for the 
graph-based tracking rises quadratically. Times for the 
phantom with a mask size approximately equal to that of the in 
vivo mask are also indicated. A fourfold increase in spatial 
resolution, corresponding to interpolating in vivo voxel 
dimensions from 2.5 mm isotropic to 0.625 mm isotropic, 
would increase the PDE computation time from approximately 
1 second to 4 minutes. 

V. DISCUSSION 
We have introduced a theoretical formalism for tractogra-

phy that inherently accounts for global properties and lends 
itself to fast implementation. In vivo examples demonstrate 
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advantages in the ability to delineate pathways that are long 
and that course near boundaries. Furthermore, connections of 
any two points in the brain can be quantified. While MC 
tractography may yield zero streamlines between two distal 
points, one may be left to wonder if the absence of streamlines 
is due to an absence of connectivity or a failure to generate a 
large enough ensemble of streamlines. The PDE approach will 
always give a nonzero, but sometimes small, density of tracks 
between two points. The MC methods and PDE methods 
essentially solve the same underlying problem, but with 
different approaches. Intuitively the increased efficiency of the 
PDE approach could be appreciated if the MC solution is 
viewed as a “serial” computation, testing each possible track 
one after another, whereas the PDE solution is viewed as a 
“parallel” computation, computing all the possible pathways 
simultaneously. 

 The use of probability theory introduced here is inher-
ently different from previously introduced approaches to 
probabilistic tractography. Our approach is to directly 
calculate the number of pathways in a given voxel using 
considerations of continuity. Seminal work by Parker [9] and 
Behrens [8] use probabilistic approaches to govern the 
trajectories of each of an ensemble of pathways. The probabil-
istic aspect enters because the step direction along each 
segment of each streamline is generated by sampling over a 
probability distribution generated from the diffusion MRI 
data. Standard streamline tractography can, within this 
framework, be seen as generating a maximum likelihood 
streamline from the ensemble. Friman introduced a formalism 
for calculating the posterior probability of individual stream-
lines [14]. Similarly, previously-introduced global methods 
[29], [30] focus on generating individual streamlines. The 
focus on direct calculation of track counts rather than on 
generating individual pathways lends itself to fast implementa-
tion by numerical PDE methods. 

 The manner in which the formalism incorporates global 
information bears some discussion. In typical, local tractogra-
phy, each step along a streamline is determined using only 
information at the location of that step, ignoring information 
from distal points along the streamline. In global tractography, 
information from distal regions has an influence. Consider, for 
example, a straight pathway in which the fiber orientation 
halfway along the path is corrupted by noise, leading to a fiber 
orientation perpendicular to that of other points along the path. 
In local tractography, limits on bending angle will terminate 
tracks when they encounter the noisy voxel. In global 
tractography, the local fiber orientation information at the 
noisy voxel is ignored in the construction of a track as long as 
there is consistency between the fiber orientation and the track 
direction overall [30]. In other words, the global approach 
departs from the greedy dominance of local transition 
probabilities between neighboring voxels. In the formalism 
presented here, the transition probabilities ( | , )i ip X X X T I  
are constructed from local probabilities, ( | )ip X X I , that are 
tempered by the constraints that tracks intersect the target and 
satisfy the boundary conditions, represented by ( | )p XT I  in 
(7). The values of ( | )p XT I  furthermore encode what will 

happen at distal voxels. For example, suppose that voxel xi has 
large local transition probability, ( | )ip X X I , but successive 
transitions from x lead tracks away from the target or towards 
a boundary. Then ( | )p XT I  will be small, leading to a small 
value for ( | , )i ip X X X T I  despite the large local transition 
probability. 

 Although (2) and (3) take the form of finite-difference 
formulations of PDEs, the equations do not derive from PDEs. 
It is of some interest, however, to consider which PDEs (2) 
and (3) might approximate. One interpretation of (3) is the 
finite-difference form of Laplace’s equation in a warped 
space. To illustrate, consider, in two dimensions, Laplace’s 
equation,  

 

( , ) 2 ( , ) ( , )0
2

( , ) 2 ( , ) ( , ) .
2

xx yy
f x x y f x y f x x yf f

x
f x y y f x y f x y y

y

�  � � � 
� � �


�  � � � 

�


 (17) 

Rearranging (17) to isolate ( , )f x y  gives 

 
( , ) [( ) ( , ) ( ) ( , )
( ) ( , ) ( ) ( , )] / [2( )],

f x y y f x x y y f x x y
x f x y y x f x y y x y
�  �  �  �  �

 �  �  �   � 
 (18) 

which can be re-written in a form analogous to (3) 
 � � � � � �, i i

i
f r c r r f r� �  (19) 

where r corresponds to position ( , )x y  and neighbors ri 
corresponds to neighbors ( , )x x y�   and ( , )x y y�  . The 
coefficients ( , )ic r r  correspond to a function of the grid 
spacing, either / [2( )]x x y �   or / [2( )]y x y  �  , that 
varies from voxel to voxel. Other neighbors can be included 
by considering higher order terms, and the extension to three 
dimensions is straightforward. When x y �  , all coefficients 
are 1/4, and the finite difference equation directly represents 
Laplace’s equation. If the coefficients are different for 
different neighbors and at different voxels, the PDE is 
equivalent to Laplace’s equation in a warped metric space. 
This interpretation resembles ideas suggested by others [31]-
[33] in different contexts. Note that the coefficients ( , )ic r r  
exhibit antipodal symmetry (opposite directions are weighted 
by the same coefficients). This symmetry is consistent with 
the coefficients ( | )ip XX I  in (3), which are derived from 
antipodally symmetric spherical harmonics. The coefficients 
in (2), however, do not necessarily exhibit antipodal symme-
try, so the warped-space interpretation does not apply. We do 
not know of any commonly used PDE that equivalent to (2). 

 One implicit parameter of the proposed method is the 
number of neighbors defined for each voxel. On a three 
dimensional grid, each voxel has 6 nearest neighbors and 26 
adjacent neighbors. The results presented use 26 neighbors. 
Use of 26 neighbors may raise the concern that the continuity 
of track number is violated because, when considering 
transitions among 26 neighbors, a track may traverse more 
than one neighbor voxel, leading to over-counting. To 
illustrate, consider the simplified 2-dimensional case (Fig. 12) 
in which a voxel x has nearest neighbor x1 and an adjacent, but 
not nearest, neighbor x2. If we consider just the number of 
tracks in each voxel, continuity is not satisfied. Voxel x 
contains three tracks, but the neighbors contain a total of four 
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tracks, two in x1 and two in x2. However, weighting with the 
conditional probabilities, ( | , )i ip X X X T I  in the continuity 
equation (2) assures that each track is counted only in the 
neighbor xi when the track directly enters x from xi. In the 
example, all tracks in x1 enter x directly, giving 

1 1( | , ) 1p X X X T I � , while only half of the tracks in x2 enter x 
directly, giving 2 2( | , ) 1/ 2p X X X T I � , resulting in  

 
� � � � � � � � � �1 1 1 2 2 2, ,

(1)(2) (1/ 2)(2) 3,

X p X X X T I X p X X X T I X� � �� �

� � �
 

satisfying continuity. 

A. Adaptability and Extensions 
The methods introduced can be readily adapted to incorpo-

rate aspects of nearly any existing methodology. For example, 
the orientation probability distributions generated by FSL’s 
bedpostx program [5], [34] can be used to generate local 
transition probabilities instead of fODFs generated by 
spherical deconvolution. Alternatively, counts of streamlines 
generated by diffusion tensor-based tractography can also be 
used [10]. 

The formalism may be extended or modified. Besides using 
different transition probabilities, the boundary conditions can 
be altered to specify the derivative of the track count (Neu-
mann boundary conditions) instead of the value (Dirichlet) or 
a mixture of the two. Specifying the derivative may be more 
appropriate at boundaries where the tracks are expected to 
align parallel to the boundary, such as ventricles or brainstem, 
as opposed to boundaries where the tracks are expected to 
terminate at the boundary, such as the neocortex. 

Our focus on track counts is largely driven by our long-term 
strategy of defining pathway-dependent statistics for assessing 
diseased tissue. For example, we have previously assessed 
anatomical connectivity along the motor pathway by integrat-
ing metrics of tissue integrity, such as radial diffusivity, along 
the pathway [7]. For such a strategy, the parameterized path of 
individual streamlines is not absolutely necessary, but the 
number of streamlines in each voxel can be used to generate a 
weighted mean of tissue integrity along the pathway. 

However, it is possible to construct streamlines from the 
track density maps. The weighted sum of vectors, id

�
, pointing 

from the center of a voxel, x, to the centers of each of its 
neighbors, xi, yields a vector: 
 ( ) ( | , )i i

i
d x p XX XT I d� �
� �

, (20) 

where the weighting is the conditional probability derived in 
(7). The vector ( )d x

�
can be interpreted as the expectation 

value of the direction of streamlines. Defining ( )d x
�

 at each 
voxel results in a vector field that can be integrated from 
points in the seed to generate streamlines. The resulting 
streamlines inherit the conditions inherent to the track density 
map, such as termination at the target and avoidance of 
boundaries. An example of streamlines for the corticospinal 
tract, using the same seed and target regions as Fig. 8, is 
shown in Fig. 13. Preliminary work suggests that these 
streamlines avoid unphysical arrangements such as tight bends 
and multiple visits to the same voxel. Future work will 
examine such streamlines in more detail. 

B. Comparison with Other PDE and Graph Methods 
A comparison in terms of interpretation can now be made 

with graph-based shortest path [10], [11] and flow-based 
approaches [12], [13]. In our PDE formalism, the resulting 
track count, �(x), can be interpreted as the number of tracks in 
a given voxel, x, that start at a seed region and terminate at a 
target region without intersecting a boundary. The interpreta-
tion is similar to connectivity values generated by the 
probtrackx program of FSL [8] if the “--targetmasks" option is 
used and is the default of the MC algorithm proposed by Lowe 
et al. [7]. 

The interpretation differs from those of graph-based shortest 
path methods and flow-based algorithms. Graph-based 
shortest path methods [10], [11] construct a network of edges 
between each pair of neighboring voxels. The edge weights 
are similar, in principle, to the local transition probabilities 
introduced here. The product of edge weights along a path 
defines the weight of the path, and the algorithms find the path 
with maximum weight to define connectivity between a seed 
voxel and every other voxel. The result differs from the PDE 
approach because the edge weights are not conditioned on 
termination at the target and avoidance of boundaries. As only 
a single path is found between seed and each voxel, the graph-
based methods represents a map of maximum likelihood paths, 
rather than an ensemble of pathways. 

Flow-based approaches model fluid-like movement through 
a vector field derived from the diffusion data. The resulting 
maps of connectivity are conceived as steady-state flow 
between a source and sink [12] or the arrival time of a wave 
front [13]. As the approach of Hageman et al. finds a steady 
state that is consistent throughout the entire vector field, 
including target and boundary, it bears strong similarity to the 

x

x1

x2

 
Fig. 12.  Illustration of continuity when including non-nearest neighbors. As 
explained in the text, conditional probabilities avoid over-counting. 
 

Fig. 13.  Streamlines generated from the motor strip to brainstem using the 
PDE formalism. For display, the 3-dimensional streamlines are projected onto 
a coronal (a) and sagittal (b) plane. 
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approach introduced here. However, the underlying equations 
differ. The approach of Hageman et al. [12] uses the Navier-
Stokes equations, literally modeling water movement through 
the brain. The approach proposed here considers conservation 
of track number as the fundamental idea. Front propagation 
methods do not impose a constraint on reaching a target. Front 
propagation methods can, however, incorporate some physical 
constraints in a manner similar to streamline tractography, 
such as stopping propagation in areas of low fractional 
anisotropy. 

An apparently minor, but quite important difference among 
methods centers on the explicit definition, or not, of a target. 
Our proposed algorithm requires definition of seed and target 
regions to define connectivity. In this sense, connectivity is 
defined similarly by the approach of Hageman et al. [12] and 
MC approaches in which the target is defined. Such condition-
ing on the target eliminates distal fading from the seed to the 
target, as can be seen from the track densities being the same 
at the seed and target regions (Fig. 4). The other approaches 
discussed above do not require an explicit target and therefore 
result in maps of connectivity between a seed region and all 
other voxels which fades with distance from the seed. For 
example, in graph-based methods, the probability of a given 
connection is derived from the product of edge weights along 
a path. As each edge weight is less than or equal to 1, the 
probability decreases with path length, and the connectivity 
maps exhibit distal fading. The graph-based methods will, 
however, always define a pathway between the seed region 
and any given voxel even if the connectivity is vanishingly 
small. 

A practical distinction is in terms of speed. Fluid flow 
approaches may have computation times of hours [12] while 
our proposed method takes only seconds. The proposed 
method also compares favorably with graph-based methods, 
especially on larger computation volumes (Fig. A3). The need 
to run the computation over numerous seed-target pairs 
tempers the speed advantage but can be addressed by calculat-
ing the result of each pair in a parallel fashion. 

C. Limitations and Uncertainties 
The simulation shown in Figs. 3 and 4 demonstrates that 

discretization error—due to a combination of discretization of 
the fODF and restriction of results to the discrete imaging 
grid—induces systematic errors in the estimation of track 
densities, but none so severe as to cause failure to map a 
connection. In addition to this systematic error, the restriction 
of results to a discrete voxel grid can be a liability when 
mapping pathways that are small compared to the voxel 
dimension. As seen in Fig. A2, pathways that are small 
compared to the voxel size are not as conspicuous as longer 
pathways. Sampling at higher resolution can ameliorate this 
problem to an extent. However, signal to noise ratio considera-
tions limit acquiring data at spacing finer than approximately 1 
mm cubed. Interpolation may also be used but has not been 
examined with regard to the proposed method. Conversely, the 
performance of the proposed method is particularly appealing 
for long pathways. Distal fading of track densities can lead to 

excruciatingly long computation times with MC methods for 
long pathways. 

 Another limitation related to presenting results in discrete 
voxels is that the extent of the track density map does not 
appear as sharp as what one may expect from streamline 
tractography. As the MC method shows this to a qualitatively 
similar extent, we believe this appearance stems primarily 
from the use of voxel-wise track density maps rather than 
issues such as discretization of the fODF in the calculation of 
the PDE results. 

 Unfortunately, our method does not include an automated 
means of setting thresholds for optimal display of the track 
density map. The difficulties are illustrated in Fig. A4. Long 
and short association fibers are shown at different thresholds. 
Figures with minimum threshold set to zero (Fig. A4(a), (f)) 
show that PDE tractography always finds a nonzero, but often 
small, value for track density. Finding a specific threshold that 
eliminates the implausibly low connectivity values depends 
largely on the extent of the white matter pathway, as do the 
differences in how the tract sharpens and diminishes with 
threshold. The optimal threshold range for the long fiber is 
lower than that for the short fiber. The value of track density 
in any given voxel is the fraction of tracks, leaving the seed 
and hitting the target but not the boundary, that pass through 
that voxel. As can be seen from Figs. A4(e) and (j), the track 
density is necessarily high near the seed and target. However, 
in intervening voxels, the track density will depend on a 
number of factors specific to the pathway, such as the length 
and dispersion in space. The difference in track density at the 
ends and middle of a pathway can also be seen in the “U” 
shape of the track density plotted against position in the 
single-fiber phantom (Fig. 4(a)). The track density at the 
middle of the pathway is especially low in Fig. 4(a) because 
the entire imaging volume is used as the mask, providing a 
large volume for tracks to disperse. If, at the other extreme, 
the mask included only the fiber, the track density in the 
middle of the pathway would be the same as at the seed and 
target. 

 Another limitation of this approach is that there is no 
apparent way to impose geometric constraints on the tracks. 
The formalism considers the net number of tracks passing 
through a voxel, but the geometry of the tracks counted may 
be unphysical. Impossibly sharp bends and multiple visits to 
the same voxel are, for example, not forbidden. An adjustment 
of the solution algorithm could, in principle, impose some 
local constraints. For example, the continuity equation (2) 
could be solved by finding values in the immediate neighbor-
hood of the seed (2) and iterating until a solution is found at 
all other voxels in an approach similar front propagation 
methods proposed by Parker et al [13]. Constraints could be 
imposed by imposing a cost on the curvature of the front, 
thereby preventing implausibly sharp turns. The simplest 
implementation could, for example, start at the seed and solve 
for the track densities in voxels neighboring the seed using 
continuity (2). We could then proceed to the neighbor with 
highest density, solve for the densities in its neighbors and 
repeat. As we progress from voxel to voxel, we can enforce 
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physical constraints such as disallowing high bending angles. 
Once a stopping criterion is met, such as arrival at the target, 
we would have an approximation of the track density, similar 
to a first iteration of the Gauss-Seidel method [20]. As the 
approach is inherently iterative, there may be an undesirable 
cost in terms of computational burden. 

 An uncertainty that requires further investigation is the 
cause of the difference between the PDE and MC results when 
tracking the transcallosal (Fig. 11) and long association (Fig. 
A1) pathways. For the transcallosal pathway, while the MC 
results show a track density through the pons comparable in 
magnitude to the track density through the corpus callosum, 
the PDE results show a stronger connection through the corpus 
callosum. This difference in the PDE results is not simply due 
to image thresholding or presentation. While the ratio of track 
density in the pons to that in the corpus callosum is ~1 in the 
MC result, it is only ~0.01 in the PDE result. The cause of the 
difference is unclear, but we did investigate several possibili-
ties. We made modifications to the MC method to mimic 
features of the PDE algorithm. To approximate the discretiza-
tion of the fODF in the PDE method, we effectively smeared 
the fODF by using a smaller maximum order for spherical 
harmonics. We eliminated the physical constraints in the MC 
routine that disallow backtracking (bending angles greater 
than 90°), which is allowed in the PDE method. We ran the 

MC method with these changes separately and together, but 
saw no decrease in the track density through the pons. The 
same mask was used for both methods. A similar difference 
was seen between the PDE and MC results in the superior 
longitudinal fasciculus. Given that the PDE method was 
designed to mimic the behavior of the MC method, we are 
puzzled by the differences seen in Figs. 11 and A1. Further 
work will examine a wider range of pathways and unravel the 
reasons driving differences seen between MC and PDE 
tractography. 

VI. CONCLUSION 
We have introduced a generic, probabilistic formalism for 

tractography that inherently accounts for global information 
while having a fast implementation. The advantages, particu-
larly with regard to long pathways and pathways along the 
subcortical surface are demonstrated in simulations and in 
vivo. The results are largely equivalent to a standard Monte 
Carlo approach, but faster by orders of magnitude. The 
approach promises to enable whole-brain tractography with 
little computational burden. 

APPENDIX 
We present Figs. A1-A4 referenced in the text. 

 

 
Fig. A1.  Maximum intensity projection of the superior longitudinal fasciculus generated by PDE (a-c), Monte Carlo (d-f), and shortest path (g-i) methods. 
Intensity ranges were set to [0.06, 0.25] (a-c) and [0.01, 1] (d-f).
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Fig. A2.  Maximum intensity projection of a short association fiber (U-fiber) generated by PDE (a, b), Monte Carlo (c, d), and shortest path (e, f) methods. 
Intensity ranges were set to [0.05, 0.5] (a, b) and [0.4, 1] (c, d). Since the length of the fiber is short compared to the voxel resolution, we see that the features of 
the track are not as distinct as those of longer fibers. 
 

 
Fig. A4.  Comparison of long and short association fibers at different thresholds. (a)-(e) Maximum intensity projections of the superior longitudinal fasciculus at 
minimum intensity thresholds of 0, 0.05, 0.1, 0.15, and 0.2, respectively. Maximum intensity is set to 0.25 for all five panels. (f)-(j) Maximum intensity 
projections of a short U-fiber at thresholds of 0, 0.1, 0.2, 0.3, and 0.4, respectively. Maximum intensity is set to 0.5 for all five panels. 
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Fig. A3.  Log-log plot of PDE (x) and shortest-path (o) computation time vs. number of voxels in the mask. PDE computation time varies linearly with 
computational volume, while shortest-path time varies quadratically. Linear and quadratic dependence are indicated by the dashed and solid lines, respectively. 
Red symbols correspond to times for computational volumes approximately equal to that of the in vivo data.
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Target audience: Diffusion MRI, tractography, intracranial electrodes/EEG, epilepsy 
Purpose: Diffusion weighted imaging (DWI) can non-invasively infer neural tractography and connectivity, which can reasonably delineate major 
known pathways. Regarding accuracy, there is continued interest is how well DWI measures of imaging connectivity (IC) correlate with 
electrophysiological connectivity (EC)—a question of clinical relevance. One standard for measuring EC is cortico-cortical evoked potentials 
(CCEPs), which uses intracranial electrodes to stimulate and record electrical activity1. Here, we compare IC and EC between pairs of regions in the 
brain varying in space. Although significant correlation between these two measures has been reported2, our results indicate that the relation between 
IC and EC is modest and still uncertain. 
Methods: CCEP data was obtained in epilepsy patients from both surgically implanted deep stereotactic electroencephalography (SEEG) electrodes, 
and subdural grid electrodes. EC was evaluated by directly stimulating an electrode contact pair and recording voltage at all other contacts. A 
measure of EC between contacts X and Y was taken to be the root mean square (RMS) of the recordings at Y, from 10 to 20 ms after X was 
stimulated. 
 Prior to implantation, the patient underwent pre-procedural imaging at 3T (2.5mm voxels), which included 61 direction diffusion imaging 
(HARDI)3, and resting-state connectivity. All electrode positions were coregistered to anatomic imaging. We have developed a fast probabilistic 
tracking method4, which was used to compute pathways from each stimulus contact to every other contact, to parallel the CCEPs stimulus. Various IC 
measures include either mean tract density along pathways, mean tract FA or TD, or mean component along FOD. Data has been obtained from four 
patients so far. 

 
Results: Fig. 1 shows a scatter plot (log-log) of the relation of EC and IC (DWI connectivity) for over 600 contacts in 4 patients; each data point 
represents a pair of points in the brain. Although there is a significant correlation, there are many points showing high IC with low EC, and visa 
versa. Fig. 2 shows a similar scatter plot comparing EC with resting-state connectivity, which shows only a mild correlation of EC with IC. Fig.3 
shows a significant distance effect whereby both IC and EC diminish with distance, an effect that further confounds the direct correlation of EC with 
IC. 
Discussion: Today, IC is extensively used to study the brain, but there is little evidence supporting various measures of IC. We attempt to derive a 
measure of IC by comparing values against the presumed gold-standard of EC. We find only a modest correlation with DWI and a minimal 
correlation with rsMRI. Many pairs of points in the brain have high IC and low EC, or have low IC with high EC. We have explored many variations 
of both EC and IC measures, and this trend is always observed. Possible causes include incompatibly low MRI resolution, distance effects of both IC 
and EC, poor co-localization of MRI voxels with electrical contact points, or intrinsic brain functionality whereby a solid structural path between two 
points does not necessarily imply a strong concordant electrophysical response.  Our results lead us to believe that the connection between EC and IC 
is tentative. This discordance could be inherent to brain physiology, or it could indicate that our current methodology is not fully understood. 
Conclusion: An extensive comparison of diffusion MRI and electrophysiological data indicates an uncertain correlation between these two measures 
of brain connectivity. 
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